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Abstract. We now refocus on polynomials over subfields of C, with emphasis

on polynomials over Q; we develop several criteria to help us determine when
such polynomials are irreducible.

1. Polynomials over C, R, and Q

1.1. Polynomials over C. First we consider polynomials with complex coeffi-
cients, and how to factor them over C.

Theorem 1. (Fundamental Theorem of Algebra)
If f ∈ C[x], then f has a root in C.

Proof. This was suspected since the 1500’s when complex number first came into
use, but was not proved until 1800, when Gauss did so in his doctoral dissertation.
The proof is deep, requiring advanced techniques of complex analysis or abstract
field theory, and is not within our reach. We accept this statement for the purposes
of orientation, but do not draw any conclusion from it after this section. �

Proposition 1. If f ∈ C[x] with deg(f) = n, then f is the product of exactly n
linearly factors.

Proof. By the Fundamental Theorem of Algebra, f has a root in C. Let a ∈ C be
a root of f so that f = (x − a)q for some q with deg(q) = n − 1. By induction, q
has exactly n− 1 linear factors. Thus f has exactly n linear factors. �
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1.2. Polynomials over R. Next we consider polynomials over R, and how to
factor them over R.

Proposition 2. Let f ∈ R[x] and let w ∈ C be a root of f . Then f(w) = 0, where
w denotes the complex conjugate of w.

Proof. Let z = a + bi be an arbitrary complex number. Then z = a− bi. Suppose
that w = c + di; then

z + w = (a + c) + (b + d)i = (a + c)− (b + d)i = (a− bi) + (c− di) = z + w,

and
z · w = (ac− bd) + (ad + bd)i = (ac− bd)− (ad + bd)i = z · w.

Moreover, if a ∈ R, then a = a. The corollary follows from these properties of
complex conjugation, as follows.

Let f(z) =
∑n

i=0 aix
i, where ai ∈ R for all i. No Then for w ∈ C, we have

f(w) =
n∑

i=0

aiwi =
n∑

i=0

aiwi =
n∑

i=0

aiw
i = f(w).

Thus f(w) = f(w), so if f(w) = 0, we have f(w) = 0. �

Proposition 3. Let f ∈ R[x]. Then f factors into a product of linear and irre-
ducible (over R) quadratic polynomials.

Proof. By the previous proposition, if w ∈ C r R is a complex root of f , then so
is w. Thus (z − w) and (z − w) are factors of f over C, but not over R. However,
(z −w)(z −w) = z2 − (w + w)z + ww = z2 − 2<(w) + |w|2 is a quadratic factor of
f with coefficients in R. So, the linear factors of f over R are of the form (z − u),
where u ∈ R is a real roots, and the irreducible quadratic factors are of the form
(z−w)(z−w), where w ∈ C is a nonreal complex root. This accounts for all of the
roots, and so gives a complete factorization. �

1.3. Polynomials over Q. Finally, we mention how one can find linear factors
over Q of a polynomial with rational coefficients.

Given a polynomial f ∈ Q[x], we note that the coefficients are rational numbers,
and we may assume that the coefficients are in lowest form. Let F ∈ Z be the least
common multiple of the coefficients of the polynomial, and set g = Ff ; then g is
a polynomial with integer coefficients, and the roots of g are the same as those of
f . Thus if we wish to understand the rational roots of polynomials with rational
coefficients, it suffices to consider polynomials with integer coefficients. Towards
this end, we have the following proposition. If we multiply f by the least common
multiple of the denominators of the coefficients
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Proposition 4. (Rational Roots Theorem)
Let f ∈ Z[x], so that f(x) = anxn + · · ·+ a1x + a0, where ai ∈ Z. Suppose that p

q

is a rational zero of f , where gcd(p, q) = 1. Then p | a0 and q | an.

Proof. We have f(p
q ) = 0; multiply this equation by qn to obtain

anpn + an−1p
n−1q + an−2p

n−2q2 + · · ·+ a2p
2qn−2 + a1pqn−1 + a0q

n = 0.

Solve this for a0q
n to obtain

a0q
n = p(−1)(anpn−1 + an−1p

n−2q + · · ·+ a1q
n−1).

Thus p | a0q
n; by a lemma from our study of integer arithmetic, since p and q are

relatively prime, we conclude that p | a0.
Similarly, solve the original equation for anpn to obtain

anpn = q(−1)(an−1p
n−1 + · · ·+ a1pqn−2) + a0q

n−1;

in this case, q | anpn, so q | an. �

2. Low Degree Irreducibility Criteria

Proposition 5. (Low Degree Irreducibility Criterion)
Let F be a field and let f ∈ F [x]. If 2 ≤ deg(f) ≤ 3, then f is irreducible over F
if and only if f does not have a root in F .

Proof. This, of course, is the same as saying that f reduces over F if and only if f
has a root in F .

If f = gh is a proper factorization over F , then deg)(g) < 3, deg(h) < 3, and
deg(g) + deg(h) = deg(f) ≤ 3. Thus either deg(g) = 1 or deg(h) = 1; without loss
of generality, suppose deg(g) = 1. Then g(x) = ax + b, where a, b ∈ F . Then −b

a is
a root of g, and hence is a root of f .

In the other hand, if a ∈ F and f(a) = 0, then (x− a) is factor of f , as we have
previously seen. �

To apply the low degree irreducibility criterion to a polynomial with integer
coefficients, one may use the rational roots theorem to demonstrate that no rational
root is possible for a quadratic or cubic polynomial. We summarize this as follows.

Proposition 6. Let f ∈ Z[x] be a quadratic or cubic polynomial. If

p, q ∈ Z, p | CC(f), q | LC(f) ⇒ f(
p

q
) 6= 0,

then f is irreducible.

Example 1. Show the f(x) = x3 − 2x + 9 is irreducible over Q.

Solution. Using synthetic division, we evaluate f at every positive and negative
divisor of 9, and find that f(1) = 8, f(−1) = 10, f(3) = 30, f(−3) = −12,
f(9) = 720, and f(−9) = −702. Since none of these are zero, f has no rational
roots, and since f is cubic, it must be irreducible. �
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3. Modular Irreducibility Criterion

Recall the function ξn : Z → Zn given by reduction modulo n, that is, by
taking the remainder upon division by n. This function has the properties that
ξ(a + b) = ξ(a) + ξ(b) and ξ(ab) = ξ(a)ξ(b).

Let p ∈ Z be prime, and extend the residue map ξp to a function from the ring
of polynomials with integer coefficients to the ring of polynomials over Zp by

ξn : Z[x] → Zp[x] given by
n∑

i=0

aix
i 7→

n∑
i=0

aix
i;

that is, we reduce each coefficient modulo n.

Proposition 7. Let p ∈ Z be prime, and let f, g ∈ Z[x]. Then

(a) ξp(f + g) = ξp(f) + ξp(g);
(b) ξp(f)ξp(g).

Proof. Two functions are equal if they are equal at each point in the domain. Thus
let x ∈ Zn; then x = x, and since f is a polynomial and BAR splits on sums and
products, f(x) = f(x) = f(x). Moreover,

f(x) + g(x) = f(x) + g(x) = f(x) + g(x);

since x is arbitrary, this is true for all x, giving (a). Also (b) follows analogously.
�

Proposition 8. Let p ∈ Z be prime, and let f ∈ Z[x]. Then deg(f) = deg(f) if
and only if p does not divides LC(f).

Proof. This is clear from the definition. �

Proposition 9. (Modular Irreducibility Criterion)
Let f ∈ Z[x] and let p ∈ Z be a prime which does not divide the leading coefficient
of f . Let f ∈ Zp[x] denote the polynomial obtained by reduction modulo p. If f is
irreducible in Zp[x], then f is irreducible in Z[x].

Proof. Suppose f reduces over Z; then f = gh where g, h ∈ Z[x] with deg(g) <
deg(f) and deg(h) < deg(f). We know that LC(f) = LC(g) LC(h), and since p
does not divide LC(f), then p cannot divide LC(g) or LC(h).

Reduction modulo p gives f = gh, preserving the degrees of each polynomial,
and giving a proper factorization in Zp[x]. �

Example 2. Show that f(x) = 33x3 − 154x2 + 343x + 130 is irreducible over Z.

Solution. We could attempt to analyze this via the rational roots theorem, but
since 130 has 7 positive divisors and 33 has 4 positive divisors, this would require
2 · 4 · 7 = 56 evaluations. However, if we notice that 7 divides 154 and 343, we
reduce the polynomial modulo 7 to obtain

f(x) = −2x3 − 10 = x3 − 5.

The only cubes modulo 7 are 1 and 6 = −1, so f is irreducible over Zp, and
consequently, f is irreducible over Z. �
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4. Gauss’ Lemmas

Definition 1. Let f ∈ Z[x]. Then content of f is the greatest common divisor of
the coefficients of f , and is denoted con(f).

We say that f is primitive if con(f) = 1.

Example 3. The content of f(x) = 14x5− 49x3 + 210x− 63 is con(f) = 7, so f is
not primitive. However, the content of g(x) = 2x5 − 7x3 + 30x − 9 is con(f) = 1,
so g is primitive.

Note that if F = con(f), then 1
F con(f) has integer coefficients and is primitive.

Also note that if f is primitive and C ∈ Z is positive, then con(Cf) = C.

Proposition 10. (Gauss’ Lemma Form I)
The product of primitive polynomials is primitive.

Proof. Let f, g, h ∈ Z[x] with f = gh, and suppose that g and h are primitive but
that f is not. Let F = con(f), and let p be a prime which divides F . Reduction
modulo p gives

f = gh.

Since p divides every coefficient of f , these coefficients are congruent to zero modulo
p, so f = 0, the zero polynomial in Zp[x]. However, since g and h are primitive,
their reductive modulo p is nonzero, so gh is nonzero, a contradiction. �

Proposition 11. (Gauss Lemma Form II)
Let f ∈ Z[x], and suppose that there exist g, h ∈ Q[x] such that f = gh. Then there
exist g1, h1 ∈ Z[x] such that f = g1h1.

Proof. First assume that f is primitive. Write the rational coefficients of g and h in
lowest form, and let G and H be the least common multiples of the denominators of
the coefficients of g and h, respectively. Then Gg and Hh have integer coefficients,
and GHf = (Gg)(Hh).

Let C = con(Gg) and D = con(Hh), and set g1 = G
C g and h1 = H

D h. Now g1

and h1 are primitive, and GHf = CDg1h1. By Gauss’ Lemma Form I, g1h1 is
primitive. Thus, since f is also primitive,

GH = con(GHf) = con(CDg1h1) = CD.

Dividing this common quantity from both sides of GHf = CDg1h1 gives f = g1h1,
so f reduces into a product of polynomials with integer coefficients.

If the original f is not primitive, let F = con(f) so that 1
F f is primitive. Then

f
F = g

F h, and applying the results of the previous paragraph, Then 1
F f = g1h1 for

some g1, h1 ∈ Z[x]. Now f = (Fg1)h1 factors f as a product of polynomials with
integer coefficients. �
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5. Eisenstein’s Criterion

Proposition 12. (Eisenstein’s Criterion)
Let f ∈ Z[x], where f(x) =

∑n
k=0 akxk. Suppose that

(a) p does not divides an;
(b) p divides ak for k < n;
(c) p2 does not divide a0.

Then f is irreducible over Q.

Proof. Let g(x) =
∑r

k=0 bkxk and h(x) =
∑s

k=0 ckxk, and suppose (by way of
contradiction) that f = gh where r > 0, s > 0, and n = r + s. By Gauss’ Lemma,
we may assume that g and h have integer coefficients.

Then
at =

∑
i+j=t

bicj .

Now a0 = b0c0, and p2 does not divide a0, so p does not divide b0 or p does not
divide c0; without loss of generality, assume p does not divide c0; we know that p
divides b0.

Also, ak = brcs is not divisible by p, so neither are br nor cs. Let t be the
smallest integer such that p does not divide bt; then p divides b0, b1, . . . bt−1. We
note that t < n.

Consider at = b0ct + b1ct−1 + · · ·+ bt−1c1 + btc0; we have

btc0 = at − (b0ct + b1ct−1 + · · · bt−1c1).

Since p divides every summand on the right hand side, p divides the sum. But p
does not divide bt, nor does p divide c0, so p does not divide the product btc0. This
contradiction completes the proof. �

Example 4. Show that f(x) = 2x5 + 21x4 − 42x3 + 245x + 700 is irreducible over
Q.

Solution. Let p = 7. Then p does not divide the leading coefficient of f (which
is 2), but does divide every other coefficient. Also, p2 = 49 does not divide the
constant coefficient (which is 700). Thus, by Eisenstein’s criterion, f is irreducible
over Q. �
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6. Cyclotomic Polynomials

Definition 2. Let p be a prime integer. The pth cyclotomic polynomial is

Φp(x) = xp−1 + xp−2 + · · ·+ x + 1.

Note that xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x + 1), which can be seen by
multiplying out the right hand side. Therefore, (x− 1) divides xn − 1, and

xn − 1
x− 1

=
n−1∑
k=0

xk.

Each of the nth complex roots of unity is a root of the polynomial equation xn−1 =
0, and there are exactly n of them. Thus xn−1 is the product of all of the distinct
linear terms of the form (x − ζ), where ζn = 1. In particular, the roots of Φp(x)
are exactly the primitive pth roots of unity. This accounts for our interest in this
cyclotomic polynomial.

Proposition 13. If p is prime, then Φp(x) is irreducible over Q.

To prove this, we perform a “linear change of variable”; we state this as a lemma.

Lemma 1. (Linear Change of Variable Lemma)
Let F be a field and let f ∈ F [x]. Let a, b ∈ F with a 6= 0. If f(ax+b) is irreducible
over F , then f(x) is irreducible over F .

Proof of Lemma. First we note that for any polynomials g, h ∈ F [x], the com-
position of (g ◦ h)(x) = g(h(x)) is another polynomial in F [x], and in fact,
deg(g ◦ h) = deg(g) deg(h). In particular, if the degree of h is one, we obtain a
polynomial in x of the same degree.

Suppose that f is reducible over F ; and let f1(x) ∈ F [x] be given by f1(x) =
f(ax + b). We wish to see that f1 is reducible over F .

Since f is reducible over F , then f = gh for some g, h ∈ F [x]. That is, f(x) =
g(x)h(x), and this holds for every x ∈ F . Thus f(ax+b) = g(ax+b)h(ax+b), with
g(ax + b) and h(ax + b) being polynomials in x, whose coefficients are in F , of the
same degree as g and h. In particular, with g1(x) = g(ax+b) and h1(x) = h(ax+b),
we see that f1(x) = g1(x)h1(x) is a proper factorization of f1; thus f1 is reducible
over F . �

Proof of Proposition. By the preceding lemma, it suffices to show that Φp(x+1) is
irreducible. Using the binomial expansion of (x + 1)p, we have

Φp(x + 1) =
(x + 1)p − 1
(x + 1)− 1

=
xp +

(
p
1

)
xp−1 + · · ·+

(
p

p−1

)
x + 1− 1

x

= xp−1 +
(

p

1

)
xp−1 + . . .

(
p

p− 2

)
x +

(
p

p− 1

)
.

Now p divides
(

p
k

)
for 1 ≤ k ≤ p − 1, and

(
p

p−1

)
= p is not divisible by p2. Thus

Φp(x+1) satisfies the hypothesis of Eisenstein’s criterion, and so is irreducible. �
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